If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-392x-84=0
a = 35; b = -392; c = -84;
Δ = b2-4ac
Δ = -3922-4·35·(-84)
Δ = 165424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{165424}=\sqrt{784*211}=\sqrt{784}*\sqrt{211}=28\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-392)-28\sqrt{211}}{2*35}=\frac{392-28\sqrt{211}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-392)+28\sqrt{211}}{2*35}=\frac{392+28\sqrt{211}}{70} $
| x/2+21=45 | | 0.86x=0.5 | | 3(11m+8)-4=251 | | -2=-3+y | | 3x+2(4x-4-(3)=0 | | |x+9|=-5 | | 5(8d+2)-3=247 | | 8(1+7v)=21 | | -3p^2-225p+506250=0 | | 3x+2(4x-4=3 | | 0=-16x^2+95 | | 8(1+7v=21 | | 116=7n=4 | | 2(2-8v)-3v=-148 | | 13=1-2p-2p | | 76w-3(4w+8)=11 | | (5x+)+76=12x | | 12x-34=34-16x | | 150=5p+2(6p+7) | | 3x÷7-x÷2=20 | | 2v+7v=14=6v+2 | | -7(-1+4a)=24+3a | | 8-3x/4=5 | | 282=41-x | | 4(5x-7)-4=-152 | | 24^2-7x+24=0 | | -16t^2+95=0 | | 3x-4x=8-2x-9 | | -0.0003x^2+0.06x+3.75=0 | | m^2-12m+4=0 | | 6x-48=62-2x | | 8m+95=87m+5 |